
Contents lists available at ScienceDirect

Building and Environment

journal homepage: www.elsevier.com/locate/buildenv

Identifying critical building morphological design factors of street-level air
pollution dispersion in high-density built environment using mobile
monitoring

Yuan Shia,∗,1, Xiaolin Xieb, Jimmy Chi-Hung Fungb,e, Edward Nga,c,d

a School of Architecture, The Chinese University of Hong Kong, Shatin, NT, Hong Kong Special Administrative Region, China
bDivision of Environment and Sustainability, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong Special Administrative Region,
China
c Institute of Environment, Energy and Sustainability (IEES), The Chinese University of Hong Kong, Shatin, NT, Hong Kong Special Administrative Region, China
d Institute of Future Cities (IOFC), The Chinese University of Hong Kong, Shatin, NT, Hong Kong Special Administrative Region, China
e Department of Mathematics, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong Special Administrative Region, China

A R T I C L E I N F O

Keywords:
Air pollution dispersion
Mobile monitoring
Building morphology
Planning optimization

A B S T R A C T

In high-density cities, optimization of their compact urban forms is important for the enhancement of pollution
dispersion, improvement of the air quality, and healthy urban living. This study aims to identify critical building
morphological design factors and provide a scientific basis for urban planning optimization. Through a long-term
mobile monitoring campaign, a four-month (spanning across summer and winter seasons) spatiotemporal street-
level PM2.5 dataset was acquired. On top of that, the small-scale spatial variability of PM2.5 in the high-density
downtown area of Hong Kong was mapped. Seventeen building morphological factors were also calculated for
the monitoring area using geographical information system (GIS). Multivariate statistical analysis was then
conducted to correlate the PM2.5 data and morphological data. The results indicate that the building morphology
of the high-density environment of Hong Kong explains up to 37% of the spatial variability in the mobile
monitored PM2.5. The building morphological factors with the highest correlation to PM2.5 concentration are
building volume density, building coverage ratio, podium layer frontal area index and building height varia-
bility. The quantitative correlation between PM2.5 and morphological factors can be adopted to develop sci-
entifically robust and straightforward optimization strategies for planners. This will allow considerations of
pollution dispersion to be incorporated in planning practices at an early stage.

1. Introduction

Air pollution has been identified as a major problem in high-density
cities in Asia [1]. Urbanization physically changes the natural land-
scape into a highly artificial built environment [2]. In a high-density
city environment, closely packed building groups weaken air flows and
consequently limit the dispersion of pollutants [3,4]. Therefore, street-
level air pollution has become a severe environmental issue in high-
density cities, such as Hong Kong [5]. The PM2.5 concentration level
monitored by roadside stations shows that the air quality of Hong Kong
does not fulfill the requirements of either the local air quality objectives
or other international air quality standards [6]. In Hong Kong, many
public health investigations have shown that air pollution are strongly
connected to adverse health outcomes. For every 10 μg/m3 increase in
the daily average concentration level of PM2.5, there will be

approximately 2% more hospitalization and 2% increase in the mor-
tality due to respiratory diseases alone [7,8]. Under such circumstances,
the Environment Bureau of Hong Kong released “A Clean Air Plan” for
Hong Kong in 2013, with the reduction of roadside air pollution as a
major focus [9].

Enhancing the rate of pollution dispersion is an effective way to
reduce its concentration [10]. A properly planned/designed urban
morphology will significantly improve pollution dispersion [11], and
thereby reduce the health risk of exposure. Under such context, aca-
demic research and the planning practice are increasingly focusing on
enhancing pollution dispersion in cities [12]. A wide range of techni-
ques has been used to monitor or model street-level pollutant con-
centrations and human exposure in the built environment [13,14]. Most
current methods on pollution dispersion in an urban environment are
based on complex numerical simulations [15–17]. They are advanced
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and accurate, but too complicated and time-consuming to help planners
and practitioners optimize the planning scheme at an early stage effi-
ciently. For example, in the practical planning process of Hong Kong,
planners need straightforward information of reasonable accuracy and
quick methods at the initial strategic planning stage of urban renewal
and new development areas (NDAs) projects.

It has been indicated that the densely built urban form of Hong
Kong is not optimized for pollution dispersion [18,19]. It blocks ven-
tilation and consequently retards the dispersion [3,19]. The tall
building clusters and narrow roads result in deep street canyons with
intensive traffic flows and high pollutant emission intensity. Besides
traffic-related air pollution, many non-vehicular PM2.5 pollution
sources at the roadside [20] (such as shops, bus stops, parking entrance,
cargo areas of shopping malls, and ventilation discharge outlets of
restaurants/commercial cooking [21,22]) also contribute to the pro-
blem. They all emit an enormously high intensity of PM2.5 and are a
significant contribution to the street-level air pollution. However, pol-
lution dispersion as a dimension of air pollution mitigation is not
commonly considered in the daily urban planning/design practice of
Hong Kong due to the lack of easy-to-use design method and practical
guidance. Therefore, it is important to obtain a scientifically robust but
more straightforward understanding of how to optimize urban planning
for better pollution dispersion in the high-density urban context. This
study focuses on quantitatively investigating the dispersion capability
of different morphological configurations along the street canyons and
identifying critical building morphological design factors for the de-
velopment of practical planning optimization strategies. This will allow
considerations of pollution dispersion to be incorporated at an early
stage in the planning practice. Considering the above, PM2.5

(particulate matters with an aerodynamic diameter< 2.5 μm, a com-
monly-used proxy to investigate pollution dispersion [23]), was used as
a comprehensive marker to quantitatively represent the dispersion
capability (of both traffic-related and non-traffic air pollution) along
the street canyons.

To resolve the effects of building morphological factors on pollution
dispersion, information of small-scale spatial variability of street-level
air pollution needs to be observed at a very fine spatial scale. In Hong
Kong, the heterogeneous building morphology and complicated traffic
network make the street-level air quality vary vastly between different
locations. Therefore, small-scale spatial variability of air pollution is
impossible to be effectively observed using data from the only a couple
of fixed roadside air quality monitoring stations (RAQMS) in Hong
Kong. Mobile monitoring as a cost-effective way to cover larger study
areas has been gaining popularity in air pollution research [24–26] due
to its advantage of fine spatial coverage. The method uses a vehicle as a
platform and its feasibility has been tested in a pilot study of mapping
the spatial distribution of street-level PM2.5 in the downtown area of
Hong Kong [19]. However, the two-week dataset measured by that
study possibly contains uncertainties, as the monitoring time at each
position is limited. As a consistent mode of public transport of Hong
Kong, trams continuously run along some fixed routes in the high-
density downtown area over a long period of time. Thus, a much larger
dataset can be obtained than the vehicle-based monitoring platform. It
has been indicated that increasing the size of mobile monitoring dataset
can greatly decrease the uncertainties in the mapping of the spatial
distribution of air pollution [27]. Hence, by monitoring the air quality
continuously for a long period of time on a tram, the abovementioned
limitations can be overcome and the robustness of the monitoring

Fig. 1. Tramway on the Hong Kong Island and the building morphology of along the tram route.
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results can be improved.

2. Materials and methods

In this present study, a spatiotemporal street-level PM2.5 dataset was
acquired by long-term mobile monitoring using the tram. It was to re-
solve the small-scale spatial variability of PM2.5 in the high-density
downtown area of Hong Kong (the northern part of Hong Kong Island).
A set of building morphological design factors was calculated for the
areas along the tram routes using GIS. Multivariate statistical analysis
was performed to investigate the correlation between the PM2.5 spatial
data and morphological data and identify critical building morpholo-
gical factors of pollution dispersion in the urban context of Hong Kong.

2.1. Mobile monitoring of street-level PM2.5 using tram

2.1.1. Measurement routes and campaign
Street-level PM2.5 measurement was made when a tram was in

service according to its normal day schedule. The fixed routes on the
northern side of the Hong Kong Island contain a RAQMS of the Hong
Kong Environmental Protection Department (Fig. 1), and the PM2.5 data
from these stations were used to compare and calibrate the street-level
PM2.5 measurements when the tram passed by. The measurement
campaign started in August 2013 and continues to the day of writing.
Measurement was made when the tram was in its normal business
service in town.

2.1.2. Instrumental setup
Collaborating with staff of Hong Kong Tramways Company, a PM2.5

measurement unit was assembled and installed on a tram vehicle
(Fig. 2). The measurement unit is composed of an optical aerosol
monitor (DustTrak DRX, TSI) with an auto-zero module for PM2.5

measurement and a GPS to locate the tram as it moved. Auto-zeroing of
DustTrak was performed every 3 h to minimize the impact of instru-
ment drifting to the measurement. A preprogrammed data logger was
used to control the operation of the system and archive the high time-
resolution PM2.5 and GPS data which were obtained at a frequency of
1 Hz. The whole system was contained in a metal-casing installed un-
derneath a seat at the rear end of the upper deck (Fig. 2-a). Powered by
the tram's DC supply and connected to DustTrak through a conductive
tubing, the system sampled ambient air from a water-drain hole on the
upper deck (3 m from ground, referring to Fig. 2-b).

2.1.3. Data quality control
The DustTrak was checked and compared with the regular PM2.5

measurements made at the HKUST Air Quality Research Supersite with
filter-based method and/or on-line FEM (Federal Equivalent Method)
instrument before it was deployed. Regular system maintenance/
checking and data download (PM2.5/GPS data together with the

control/performance parameters of the instruments) were performed
when the tram was back to depot for servicing, normally at a 8-
working-day interval. In the beginning trial phase, measurement was
conducted every day from 10:00 to 19:00 with auto-zeroing every 3 h to
test out the system. In the normal operational phase, measurement was
performed every day after depot servicing from 7:00 to 19:00 with
auto-zeroing every 3 h to cover all the normal day hours when the tram
was in service. Therefore, the mean pollution concentration value
measured at each location robustly reflects the long-term average level.
The mobile monitored dataset can depict the small-scale spatial varia-
bility of PM2.5 without any uncertainties introduced by temporal var-
iations.

To be more specific, when the tram moves from the west end of
Hong Kong Island to the east end, the whole journey takes approxi-
mately 1 h. Within that hour, the background concentration of PM2.5

normally varies very little (typically less than 5 μg/m3, based on the
data from background monitoring stations of Hong Kong). However,
the measured PM2.5 concentration along the tram route during one
particular journey can vary by as much as 40μg/m3 or even more in a
relatively short distance of less than 100 m (based on the mobile
measurement data, Fig. 5). The extent of spatial variations of con-
centration reflects that they are not caused by the background varia-
tion. The GPS data were checked/validated against the monthly time-
location (stop location) of the tram provided by Hong Kong Tramways
Limited.

The linear regression assumption is common and has been used in
several previous studies using DustTrak in Hong Kong [28–30]. In one
of them [28], the collocating data from DustTrak (5min) and Reference
method (1 h) at Causeway Bay RAQMS were used. The results show a
good correlation of R = 0.91. In this study, we used the observations
from the Causeway Bay RAQMS to calibrate the tram measurements.
The tram measurements represent the polluted situation at the lower
level of the street canyon. The PM2.5 inlet of the Causeway Bay RAQMS
is installed 3 m above ground, around the same height as the instrument
on the tram. To calibrate the tram measurements with the observations
from Causeway Bay RAQMS, the tram data collected between the sta-
tions of 51E Percival Street and 53E Paterson Street were extracted. The
raw tram data were measured second by second, while the provided
observations from Causeway Bay RAQMS were hourly data. The
monthly averages within the study period of both the tram data and
RAQMS observations were then calculated for calibration purpose.
Monthly averages were used instead of hourly averages because the
quantity of data collected by the tram in an hour was too small to be
representative for calibration purpose.

Firstly we divided the monthly average of the tram-based PM2.5 data
by the monthly RAQMS observations to obtain a factor for each month
of the study period. The result varies from 1.43 to 2.83. Then we ap-
plied the optimal method to search for the best factor with the least
difference between the observations and tram data after calibration

Fig. 2. (a) Instruments in the casing on tram – the data
logger on the left and DustTrak DRX on the right. The GPS
is attached on the outer wall of the casing. (b) The PM inlet
on the tram.

Y. Shi et al. Building and Environment 128 (2018) 248–259

250



Fig. 3. The finalized empirical semivariogram models and the corresponding major ranges of the PM2.5 datasets.
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(i.e., the tram data over the fixed factor) based on the monthly tram
measurement and observations. A value of 1.91 was determined to be
the optimal calibration factor, basically consistent with a prior study in
Hong Kong using Mong Kok RAQMS as the calibration reference [19].
The above method is illustrated by the following equations:

=CF
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where n is the total number of the monthly averaged value used for the
calibration. Fj is the jth calibration factor. Dj is the square of difference
for the jth calibration factor.

2.2. Tram-based PM2.5 data processing

2.2.1. Collating data in GIS
The raw dataset collected by the PM2.5 measurement unit mainly

contains two parts – PM2.5 concentration level measured every second
and the synchronously recorded geographical locations (GPS data).
These two parts of data were collated according to the time stamps and
imported into GIS with the HK1980 coordinate system for further
processing and analysis. In this present paper, a four-month dataset—
2014-12, 2015-01, 2015-06 and 2015-07—was extracted and analyzed.
Considering the differences in the dominant air pollution modes be-
tween seasons [31] and to analyze the resulting variation, we also di-
vided the data into two seasonal datasets (summertime and winter-
time).

2.2.2. Determining a suitable spatial scale for data aggregation
A properly determined spatial scale for data aggregation is im-

portant for the reduction of uncertainties in geographical analysis,
especially when it involves a large dataset like the one in this study
(which is a spatiotemporal dataset with 1-s temporal resolution for four
months). In air pollution mapping studies, over-aggregated data in-
troduce bias in regression analysis [32] and can possibly lead to over-
estimation of the correlation coefficient in the regression analysis.
Following the method used by Lightowlers, Nelson, Setton and Keller
[33], the semivariogram method was adopted to determine the spatial
scale for the data aggregation of tram-based PM2.5 data in this present
study. The semivariogram modelling has been adopted to inform the
appropriate spatial scale for many spatial analysis methods (e.g. hotspot
analysis, kriging/cokriging interpolation) in air pollution and health
studies. A search radius or the neighbourhood kernel is usually defined
as a parameter [34]. An optimized semivariogram function is essential
for the determination of this parameter to avoid misleading conclusions
associated with inappropriate spatial aggregation [35]. The semivar-
iogram model used in geographical data analysis is defined as a func-
tion of distance as shown in the following equation:

∑= −
− =

γ
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z zˆ 1
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where γ̂ is the semivariogram. The spatial points si and sj are paired in a
semivariogram modelling. zi and zj are the measured data of si and sj. d
is the distance between si and sj. n d( ) is the amount of the pairs of all
spatial points [34]. In a dataset of a group of spatially-distributed data
points, the semivariogram value keeps increasing with the distance

until a limit defined as the sill (σ (0)). By calculating the semivariogram
and developing the best fitting semivariogram function, the range (r),
as a parameter of the empirical semivariogram model, can be de-
termined based on the following equation (there are different semi-
variogram model types, such as the spherical, exponential and Gaussian
model. In this present study, as shown in Fig. 3, all optimized models
have the stable semivariogram model type. Therefore, the function of
the stable semivariogram is shown here as an example of how an ap-
propriate spatial scale was determined basing on the semivariogram
model).
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where h is the lag distance of the corresponding γ h θˆ ( ; ). ω and θ are
model parameters. A more detailed procedure of semivariogram mod-
elling has been described in a prior geostatistical study [36]. The cor-
responding h at which 95% of σ (0) reached is determined as the major
range (also named semivariogram range). The geographical meaning of
a semivariogram model is that the data points within the major range
are spatially correlated, while the data points beyond the major range
are independent of each other. Semivariogram modelling is commonly
adopted to deal with the spatial dependence/autocorrelation issues of
spatially distributed observation points [37]. It has been used as a
method in the determination of the spatial resolution of air quality
mapping [19,38].

The ArcGIS software was used as a tool for all geo-spatial analysis in
this study and the instruction of the semivariogram algorithm in the
following literature was referred to for a reliable modelling [39,40]. As
a result, six stable type semivariogram models were modelled for the
datasets of four months (2014-12, 2015-01, 2015-06 and 2015-07). As
mentioned, the data were also divided into two seasonal datasets
(summer and winter) for semivariogram modelling. The resultant em-
pirical semivariogram models and their major ranges are shown in
Fig. 3. The results show that the data measured during wintertime have
larger major ranges (from 26.1 m to 69.6 m with an average level of
46.5 m) than summertime data. This result indicates that summertime
datasets provide spatial information at a finer spatial scale (ranges from
8.0 m to 10.3 m with an average level of 9.1 m) and can profile very
short-range variations. This is possibly due to the lower impact of re-
gional pollution during summertime. The variability in locally emitted
air pollutants becomes clearer to be observed as a result.

2.2.3. Spatial aggregation of the PM2.5 data
Considering the differences in the spatial independence between the

summertime and wintertime datasets, different spatial scales were used
for data aggregation. Based on the results of the semivariogram mod-
elling, a group of points was firstly created on the tram route using a
fixed spatial interval (10 m for summertime data and 50 m for win-
tertime data, Fig. 4). All observations within a search radius (radii) of
each point (radii = 5 m for summertime data and radii = 25 m for
wintertime data) were then aggregated to the corresponding point
using the mean concentration value. Fig. 5 shows the seasonal average
spatial distribution of the street-level PM2.5 concentration based on the
aggregated dataset.

2.3. Analyzing the building morphology along the tramway

2.3.1. Calculating the building morphological factors
To depict the current building morphological design features in the

monitored area, a total of 17 building morphological factors was cal-
culated. They include the mean and standard deviation of building
height (h)/ground coverage ratio (λP), building volume density (BVD),
sky view factor (of the entire hemispherical sky view and its eight
sectors respectively, Ψsky) and three layers of frontal area index (λF , the
values of the 16 wind directions and the weighted value based on the
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probability of each direction for the two seasons) (Fig. 6 and Table 1). A
previous study found that the total frontal area index of all layers was
related to the concentration level of many air pollutants [41]. In this
study, we further divided this factor into three layers at different
heights (the podium layer between 0 and 15 m, the building tower layer
between 15 and 60 m and the total layer between 0 and 500 m) to cater
for the typical building structure of Hong Kong [42].

2.3.2. Neighboring analysis of the building morphological factors for data
aggregation points

The street-level PM2.5 concentration at each monitoring point is
influenced by the building morphological condition in its surrounding
area. The neighboring analysis is composed of two steps: (1) creating
buffers, (2) sensitivity test of critical buffer identification. First, the

buffering analysis method was used in this study. As mentioned in
section 2.2.3, the PM2.5 observations were aggregated into a group of
points on the tram route based on the spatial aggregation scales de-
termined by the semivariogram modelling (Section 2.2.2). A series of
buffers (with radii of 50 m, 100 m, 200 m, 300 m, 400 m and 500 m)
was created around each data aggregation point (Fig. 7).

When using building morphological factors as the predictor vari-
ables to explain the variation in street-level PM2.5 observations, the
critical buffer widths of different building morphological factors may
vary due to the physical basis of pollution dispersion. Geographically, a
building morphological feature measured by a specific factor within its
critical buffers explains the variation of pollution to the greatest extent.
Therefore, sensitivity test was conducted for each building morpholo-
gical factor to determine its critical buffer width in explaining the PM2.5

Fig. 4. The aggregation points along the tramway route
generated in GIS.

Fig. 5. The spatial plot of the seasonal averaged street-level PM2.5 concentration along the measurement routes. The spatial variation of the measured PM2.5 concentration and building
morphological factors in the range of the inset boundary (dashed box) is plotted in Fig. 9.
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Fig. 6. A schematic diagram of calculating the building morphological factors (using an example of a street block in the North Point, a street-level PM2.5 concentration hotspot).

Table 1
The equations used in the calculation of building morphological factors (improved from [19]).

Building Morphological
Factor

Unit Equation of Calculation Theoretical Meaning

Mean of building height m = ∑ =h h
n i

n
i

1
1

(6) Vertical building development intensity.

σ of building height m = ∑ −=σ h h( )h n i
n

i
1

1
2 (7) Diversity of building height within a specific

area.
Building coverage ratio %a = ∑ =λ A A( )/P i

n
Pi T1

(8) Building ground coverage intensity.

σ of the ground coverage
ratio of all building
clusters in a specific
area

% = ∑ −=σ λ λ( )λP n i
n

Pi P
1

1
2 (9) Diversity of building coverage within a

specific area.

Building volume density % Total building volume of each lot is:

= ∑ =V A hi
n

Pi i1
Vmax is the highest V among all j lots whole city. The building volume density of lot j is:

=BVD V V/j j max

(10)
(11)

BVD is a percentage value for reflecting the
spatial distribution of the building density in
a study area.

Sky view factor (SVF)b [0-1]
A detailed formula by Dozier and Frew [43]

∫= + − − −Ψ β φ β α φ φ φ d[cos cos sin •cos(Ф )•(90 sin cos )] Фsky π

π
1

2
0

2
2

(12) A measure of the openness to the sky of a
given location, Please see reference [44] for
a more detailed description. In this study, the
hemispherical sky view was also divided into
eight sectors for sector-SVF calculation.

Frontal area indexc –
Total (c-500 m)

C =λ A A/F F T (13) A wind direction – dependent measure of the
horizontal permeability.

Frontal area index
–Podium Layer (0-
15 m)

C =− −λ A A/F m F m T(0 15 ) (0 15 ) (14) The horizontal permeability at the podium
layer of Hong Kong.

Frontal area index –
Building Tower Layer
(15-60 m)

C =− −λ A A/F m F m T(15 60 ) (15 60 ) (15) The horizontal permeability at the building
layer of Hong Kong.

a The resulting percentage values from this calculation were converted to an interval of [0-1] during further multivariate analysis.
b Calculated for the entire hemispherical sky view and also its eight sectors (9 SVF values for each point).
c λF is a dimensionless quantity. It was calculated at three different height layers along 16 wind directions [42]. The weighted λF value based on probability of the 16 wind directions

for two seasons are also calculated. Therefore, there are 17 λF values for each point.
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variation. A simple linear regression between the building morpholo-
gical factors calculated using each buffer and the aggregated PM2.5

concentration data were performed. Pearson correlation coefficients (r)
were calculated for the comparison of buffer widths. Only the buffer-
based building morphological factors with the highest |r| were selected
as the predictor variables for further correlation analysis.

2.4. Correlating the building morphology with PM2.5 concentration

2.4.1. Using stepwise multiple linear regression modelling
The stepwise multiple linear regression (MLR) method was adopted

to examine all possible regressions between the aggregated tram-based
PM2.5 (response variables) and predictor variables within the critical
buffers. Regression models were developed by the rules of minimum
Bayesian information criterion (BIC), and the forward order is used
[45,46]. The formula of an initial MLR model is stated below:

= + + … + + +PM α Var α Var α Var γ εi i i n ni2.5 1 1 2 2 (16)

where PM i2.5 is the PM2.5 concentration value at the aggregation point i
on the tram route. The model includes n building morphological factors
as the predictor variables. α1, …, αn are the slopes of values of the
building morphological factors Vαr i1 , …, Vαrni at the aggregation point
i. γ is the model intercept, and ε is the residual.

The model and all its variables fulfil the significance level of the p-
value < 0.0001. The model initially developed with the stepwise
method was further examined to avoid multicollinearity.
Multicollinearity (the situation where predictor variables are highly
correlated with each other) in a model leads to limited explanatory
capacity and introduces suspicious regressions [47]. In this present
study, both the variance inflation factor (VIF) and multivariate corre-
lation analysis were used to detect the underlying correlations among
predictor variables, and to ensure that there is no significant multi-
collinearity among the final predictor variables included in resultant
models. Firstly, we examined the VIF of each variable in the initial
models. Those with VIF> 2 were excluded. Then, we performed mul-
tivariate correlation analysis. If significant multicollinearity (correla-
tion of above 0.8) among predictor variables was detected [48], only
the variable with a higher simple linear correlation to the response
variable was preserved for regression models. The final model was
adjusted to ensure there is no multicollinearity issue. The correlation
coefficient (R2) was used to evaluate the model performance.

2.4.2. Model validation method
To evaluate the model performance, we conducted leave-one-out

cross-validation (LOOCV) to compare the differences between the
monitored and estimated concentration. The root-mean-square error
(RMSE) and the R2 from the LOOCV (RLOOCV

2 ) were used to validate the
resultant LUR models:
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(18)

where PM i2.5 is the monitored concentration at the aggregation point i.
PM‘ i2.5 is the estimated PM2.5 concentration at the aggregation point i

acquired based on the above MLR modelling.ˆPM i2.5 is the average value
of the PM‘ i2.5 . n is total amount of aggregation points in the dataset.

3. Results

The critical buffer width was firstly identified by the sensitivity test
for each building morphological factor for summertime and wintertime.
The results of the sensitivity test are shown in Table 2. It can be ob-
served that the critical buffers of most morphological factors remain
unchanged between summer and winter. The consistency of critical
buffers between seasons implies that the influence of urban morpho-
logical features on street-level air quality remains significant regardless
of the seasonal changes in air pollution modes [31].

Using spatially aggregated seasonal PM2.5 concentrations as the
response variables and all selected morphological factors (Table 2) as
the predictor variables, we developed separate correlation models for
summertime and wintertime (Table 3 and Fig. 8). The adjusted R2

(Adj R2) values of the resultant model of the 10 m-spatially aggregated
summertime PM2.5 concentration is 0.368. The Adj R2 of the model of
the 50 m-spatially aggregated wintertime PM2.5 concentration is 0.306.

Fig. 7. A series of buffers for the neighboring analysis of the
building morphological factors of the surrounding area of
data points.
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4. Discussion

4.1. Interpreting the resultant correlation models

As indicated by the resultant models, in Hong Kong, building mor-
phology explains 37% and 31% of the spatial variability in tram-based
street-level PM2.5 observations in summer and winter respectively. The
building morphological indices with the highest correlations to the
tram-based PM2.5 concentration (street-level air quality) are building
volume density (BVD 200 m, positive correlation), building coverage
ratio (λP 200 m, positive correlation), frontal area index of the podium
layer (0-15 m, −λF m(0 15 ) 200 m, positive correlation) and variability in
building heights (σh 500 m, negative correlation). The resultant models
identify the important predictor variables and their corresponding cri-
tical buffers. Fig. 9 shows the spatial variation of the aggregated PM2.5

concentration data and building morphological factors in different
sections along the tram route.

4.1.1. Identifying the predictor variables as important urban morphological
design factors for Hong Kong

BVD reflects the land use intensity per unit area. Densely packed
building bulks block the airflow and reduce the pollutant dispersion
rate. BVD is not only an influential factor of dynamic potential of air
flow but also an indirect measure of the intensity of anthropogenic
activities (for example, the traffic flow in a densely-populated area is
usually higher than the low-density ones). In other words, the spatial
variability in BVD also partially depicts the spatial distribution of pol-
lution sources. λF is a morphological factor of the permeability of
building shapes with respect to the prevailing wind flow. It has been
widely adopted in the assessment of urban ventilation. In this present
study, it was further separated into three layers of different heights

Table 2
Results of the sensitivity test of the critical buffer (unit: m) of each building morpholo-
gical factor.

Morphological Factors r Summer Buffer, Summer r Winter Buffer, Winter

λP 0.523 200 0.416 200
σ λP 0.419 500 0.346 500

h 0.401 200 0.109 500
σh 0.228 500 −0.034 500
BVD 0.547 200 0.270 300
λF 0.474 200 0.130 200
λF ,N 0.538 200 0.395 200
λF ,NNE 0.527 200 0.382 200
λF ,NE 0.504 200 0.302 200
λF ,ENE 0.455 200 0.143 200
λF ,E 0.508 200 0.275 200
λF ,ESE 0.511 200 0.416 200
λF ,SE 0.507 200 0.418 200
λF ,SSE 0.536 200 0.395 200
λF ,S 0.538 200 0.395 200
λF ,SSW 0.527 200 0.382 200
λF ,SW 0.504 200 0.302 200
λF ,WSW 0.455 200 0.143 200
λF ,W 0.508 200 0.275 200
λF ,WNW 0.511 200 0.416 200
λF ,NW 0.507 200 0.418 200
λF ,NNW 0.536 200 0.395 200

−λF m(0 15 ) 0.396 200 0.125 200

−λF m(0 15 ),N 0.469 300 0.397 200

−λF m(0 15 ),NNE 0.448 300 0.382 200

−λF m(0 15 ),NE 0.409 300 0.291 200

−λF m(0 15 ),ENE 0.409 300 0.291 200

−λF m(0 15 ),E 0.436 300 0.291 200

−λF m(0 15 ),ESE 0.433 300 0.425 200

−λF m(0 15 ),SE 0.428 300 0.420 200

−λF m(0 15 ),SSE 0.459 300 0.402 200

−λF m(0 15 ),S 0.469 300 0.397 200

−λ ,SSWF m(0 15 ) 0.448 300 0.382 200

−λF m(0 15 ),SW 0.409 300 0.291 200

−λF m(0 15 ),WSW 0.409 300 0.291 200

−λF m(0 15 ),W 0.436 300 0.291 200

−λF m(0 15 ),WNW 0.433 300 0.425 200

−λF m(0 15 ),NW 0.428 300 0.420 200

−λF m(0 15 ),NNW 0.459 300 0.402 200

−λF m(15 60 ) 0.476 200 0.118 200

−λF m(15 60 ),N 0.542 200 0.393 200

−λF m(15 60 ),NNE 0.532 200 0.387 200

−λF m(15 60 ),NE 0.505 200 0.306 200

−λF m(15 60 ),ENE 0.441 200 0.136 200

−λF m(15 60 ),E 0.492 200 0.251 200

−λF m(15 60 ),ESE 0.506 200 0.392 200

−λF m(15 60 ),SE 0.507 200 0.405 200

−λF m(15 60 ),SSE 0.534 200 0.385 200

−λF m(15 60 ),S 0.542 200 0.393 200

−λF m(15 60 ),SSW 0.532 200 0.387 200

−λF m(15 60 ),SW 0.505 200 0.306 200

−λF m(15 60 ),WSW 0.441 200 0.136 200

−λF m(15 60 ),W 0.492 200 0.251 200

−λF m(15 60 ),WNW 0.506 200 0.392 200

−λF m(15 60 ),NW 0.507 200 0.405 200

−λF m(15 60 ),NNW 0.534 200 0.385 200
Ψsky −0.318 0 −0.154 50
Ψsky N, −0.250 0 −0.154 0
Ψsky NE, −0.110 0 −0.025 0
Ψsky E, −0.059 0 −0.064 0
Ψsky SE, −0.192 0 −0.172 0
Ψsky S, −0.279 0 −0.161 0
Ψsky SW, −0.265 0 −0.066 0
Ψsky W, −0.281 0 −0.122 0
Ψsky NW, −0.306 0 −0.250 50

Table 3
Resultant MLR models showing the correlation between building morphology and street-
level PM2.5 concentration in summertime and wintertime respectively.

Correlation in Summertime

Response
Variable

Spatially aggregated summertime tram-based PM2.5 data using
spatial resolution of 10 m

R2 0.369
Adj R2 0.368
RMSE 5.575
Mean of Response 32.836
P-value < 0.0001
10-fold Cross

Validation R2
0.361

Predictor
Variables

Estimate Std
Error

t Ratio Prob> |t| VIF

Intercept 25.886 0.528 49.06 < 0.0001 n/a
σh 500 m −0.111 0.019 −7.01 < 0.0001 1.624
BVD 200 m 64.789 3.122 20.75 < 0.0001 2.239

−λF m(0 15 ) 200 m 20.008 3.836 5.22 < 0.0001 1.537

Correlation in Wintertime

Response
Variable

Spatially aggregated wintertime tram-based PM2.5 data using
spatial resolution of 50 m

R2 0.310
Adj R2 0.306
RMSE 5.106
Mean of Response 91.853
P-value < 0.0001
10-fold Cross

Validation R2
0.304

Predictor
Variables

Estimate Std
Error

t Ratio Prob> |t| VIF

Intercept 82.522 1.234 66.85 < 0.0001 n/a
λP 200 m 36.333 2.971 12.23 < 0.0001 1.113
σh 500 m −0.096 0.027 −3.60 0.0004 1.113
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Fig. 8. MLR regression plot of the correlation models. The
amount of the wintertime data points are less than sum-
mertime because of the different spatial aggregation.

Fig. 9. The spatial variation of the aggregated PM2.5 concentration data and building morphological factors in different sections along the tram route.
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considering the typical building structure of Hong Kong. −λF m(0 15 ) de-
picts the building morphological permeability at the street-level and
thus has an effect on the dispersion rate of air pollutants, especially in a
high-density built environment. The inclusion of λF in the resultant
models (developed using tram-based PM2.5 observation in this study) is
consistent with the findings in a previous study based on fixed mon-
itoring data from AQMN of HKEPD [41]. Building ground coverage
ratio is an alternative indicator of street-level wind availability of

−λF m(0 15 ) [42]. The turbulent intensity near the urban surface de-
termines the mixing and dilution of air pollutants. A higher variability
in building height (measured as the standard deviation of the building
height, σh) increases the intensity of turbulence near the urban surface
and as a result helps with the dispersion.

4.1.2. Identifying the critical buffers for the morphological factors
The identification of the critical buffer for each building morpho-

logical factors is one of the most important contributions of this study.
Most prior studies calculated all spatial factors using a fixed grid system
with a specific spatial resolution. However, the critical buffer widths of
different morphological factors may vary due to the complex physical
basis of pollution diffusion and dispersion. As shown in Table 2, the
buffer size used in this study is more similar to a typical land use re-
gression approach [49]. Such spatial scale enables the investigation of
the neighbourhood-scale building morphological effect within the
urban roughness layer. In Hong Kong, it has been proved that neigh-
bourhood scale building morphology within the urban roughness layer
has a strong effect on street-level air quality [18]. The buffer is sig-
nificant for the development of neighbourhood-scale urban design
strategies.

As identified by the results of the sensitivity test, the critical buffer
width of the BVD, λP, −λF m(0 15 ) is 200 m; the critical buffer of σh is
500 m. The findings on buffer width can be further interpreted as fol-
lows: the street-level air quality (evaluated as PM2.5 concentration in
this present study) of a specific location in the high-density downtown
area of Hong Kong is significantly influenced by the building mor-
phology measured by BVD, λP, −λF m(0 15 ) in its surrounding area with a
radii of 200 m and σh within its surrounding area of 500 m.
Alternatively speaking, a building/urban design project strongly affects
the street-level air quality of its 200 m-wide surroundings; a distance of
500 m should be defined as the critical range for evaluating and de-
signing the height variability in building clusters. As observed in this
study, the critical buffer sizes of the BVD, λP, and −λF m(0 15 ) are the same
(200 m) while the critical buffer of σh is larger (500 m). In a previous
similar study in Hong Kong [19], it was found that σh has a larger cri-
tical buffer than other building morphological factors as well. This
phenomenon may be explained by the concept of source area (or
‘footprint’) [50]. A source area refers to the surrounding area (influ-
ential buffer) of a sensor location of the measurement with respect to
the turbulence. The influential buffer of a screen-level measurement is
likely to depend upon the building density. It is thought that this in-
fluential buffer has a radius up to approximately 0.5 km [50]. There-
fore, it is still reasonable to have a larger buffer of σh.

4.2. Estimating the small-scale variability in street-level air quality using
building morphology

The estimation of the small-scale spatial variability at the street
level in an urban environment serves as a basis for urban environmental
planning and policy decision-making, especially for a high-density built
environment because the complex building morphology significantly
alters street-level air quality. This study has discovered the correlation
between the spatial variability of PM2.5 concentration and morpholo-
gical factors, and identified critical design factors. These will enhance
the current understanding of the impacts of building design on street-
level air quality. For example, as indicated by the resultant correlation
models, −λF m at a m buffer(0 15 ) 200 is positively correlated to the long-term

average street-level PM2.5 concentration both in summertime and
wintertime. It means that the PM2.5 level of a position within a street
canyon is greatly influenced by the morphological permeability of the
podium layer within its surroundings with a buffer width of 200 m (a
circular area with a diameter of 400 m). It is commonly opined that a
high-density urban morphological form with well-developed environ-
mental planning and management policies could be more sustainable
because of intensive land use, promotion of public transport mode and
efficient use of public resources [51,52]. The findings in this present
study can substantially contribute to a more quantitative and scientific
basis for the current urban design guidelines in Hong Kong –Chapter 11
of the Hong Kong Planning Standards and Guidelines (HKPSG) [53].

It should be emphasized that this present study will not only be
relevant to Hong Kong. As the mobile measurement experimental
method is now increasingly used to obtain more accurate spatial esti-
mations of intra-urban air pollution, the findings of this study can be
further compared with similar efforts in different regions under dif-
ferent urban contexts. The outputs from this study can be further ex-
panded and applied to other highly urbanized areas in the estimation of
street-level air quality.

5. Conclusions

Many previous studies have been conducted to resolve the issues
related to air pollution and morphological factors qualitatively or
quantitatively, but they were mostly performed at a small spatial scale.
Together with some recent efforts (for example [26,27]), this present
study is one of the first attempts at dealing with these issues quanti-
tatively at a large spatial scale. The dispersion capability of different
morphological configurations along the street canyons was investigated
at the level of an urban road network which could not be achieved by
conventional methods (such as CFD numerical simulation). The quan-
titative correlations between PM2.5 and morphological factors devel-
oped by this present study will allow considerations of pollution dis-
persion to be incorporated into the urban planning practice. It provides
quantitative references and straightforward information of reasonable
accuracy to planners at the initial strategic planning stage of urban
renewal and new development areas projects in Hong Kong. The find-
ings of this Hong Kong study will serve as a quantitative reference of
evidence-based strategy-making of neighbourhood-scale urban designs
(e.g. the optimization of the arrangement of buildings, or the spatial
layout of urban open space). Moreover, the experimental methods and
findings of this study are also readily applicable to investigating the
effect of urban morphology on intra-urban air pollution dispersion in
other cities.
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